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Prediction of Error due to Eccentricity of Hole in Hole-Drilling 
Method Using Neural Network 
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The measurement  of  residual stresses by the hole-dr i l l ing  method has been used to evaluate 

residual stresses in structural members. In this method, eccentricity can usually occur between 

the hole center and rosette gage center. In this study, we obtained the magni tude  of  the error due 

to eccentricity of  a hole through the finite element analysis. To predict the magnitude of  the error  

due to eccentricity of  a hole in the biaxial residual stress field, it could be learned through the 

backpropagat ion  neural network. The prediction results of  the error using the trained neural 

network showed good agreement with FE  analyzed results. 
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1. Introduction 

Residual  stress means the stress that exists in- 

side the machinery or  structures without  external 

loads. Such residual stress is superposed onto the 

service stress and affects the fatigue life of  ma- 

chinery or  structures significantly. Especially, for 

structures connected with a material part that ex- 

perienced the hot  forming procedure or  welding, 

residual stress may increase to the level of  yield 

stress. Fo r  such a reason, if  the structures were 

designed on the assumption o f  no residual stress, 

safety problem may be significant. As a result, the 

magni tude of  residual stress should be accurately 

considered in the design of  structures, and accu- 

rate measurement  of  residual stress is very impor-  

tant. 

The  hole-dr i l l ing  method (HDM) makes a 

small hole on the metal surface that has residual 
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stress and measures the relieved stress with a 

strain gage. it is widely used in measuring the 

residual stress on the surfaces. Mathar  (1934) first 

suggested this method in the 1930s and constant 

developments  were achieved in its theory and 

applications.  Further  studies on more accurate 

and simpler measurement  instruments and me- 

thods have been accomplished (F laman  et al., 

1986; Too toon ian  et al., 1995; Schajer et al., 

1997). 

The  current standard examinat ion method of  

the hole dri l l ing method is specified in A S T M  

E837-99. Because the measurement  results vary 

by the locations of  the holes, vertical hole dri l l ing 

is assumed in A S T M  and the eccentricity between 

the center of  the strain gage and the center of  the 

hole is restricted to be under  0.025 mm. However ,  

in many cases, measurement  objects are often 

irregular, and even when special measurement 

tools such as RS-200 are used, accurate hole 

dri l l ing is quite difficult to perform. As a result, 

when holes are dril led with an eccentricity, errors 

are generated due to the eccentricity of  the hole. 

When hole dri l l ing is carried out, it is required 

that some error should be anticipated in advance. 

Various studies have been performed on the 
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effects of eccentricity of the drilled hole in the 

hole-drilling method. Ajovalasit (1979) perform- 

ed a theoretical study and Wang (1990) proposed 

a method that corrects the relieved strain co- 

efficient using numerical analysis. Kim et al. 

(2002) proposed prediction of the error due to the 

eccentricity of hole and correction of the error in 

the uniaxial residual stress field using finite ele- 

ment and numerical analyses. However, theo- 

retical studies until now have set the equations 

based on Kirsch's solution (1970) that is intended 

tbr the through-hole cases. When the blind hole 

is drilled, accurate theoretical solutions for the 

effects of the eccentricity have not been proposed 

due to many difficulties such as setting boundary 

conditions, etc. Moreover, most studies on the 

finite element and/or  numerical analysis have 

been performed by simplifying the stress field to 

cases of the uniaxia.l residual stress field. 

When the hole-drilling method is applied to 

the general biaxial residual stress field, the eccen- 

tricity of the hole includes error for the measured 

value. The magnitude of the error depends on 

multiple variables including the stress ratio, the 

magnitude and direction of eccentricity and so 

on. Various algorithms have been developed to 

predict the results of these multiple variables, and 

studies to predict the results using artificial neural 

networks have been performed actively (Cho and 

Joo, 2000; Inamdar et al., 2000). When accurate 

and sufficient learning data are available, artifi- 

cial neural networks can be used to effectively 

predict the result of any input variable. 

In this study, we established a biaxial residual 

stress field model and obtained the magnitude of 

the error due to eccentricity of hole through the 

finite element analysis. In order to predict the 

magnitude of the error due to eccentricity of hole 

in the biaxial residual stress field, it could be 

learned through the backpropagation neural net- 

work. 

2. Training Algorithm of  Neural  
Network 

The artificial neural network (Fausett, 1994) is 

a model that has been made by imitating the brain 

structure and learning habits of humans. It gen- 

eralizes data through neural network training 

similar to the learning methods of the human 

brain. Fig. 1 shows the generalization process of 

the artificial neural network. For generalization, 

training examples of the question must be pro- 

posed with an input pattern to the neural net- 

work. The "education" process involves repeated 

input patterns to the neural network until they are 

"learned". When learning is completed success- 

fully, examples are used to test the neural network 

and the trained network proposes appropriate 

prediction results. 

The backpropagation neural network is one of 

the most widely used learning models proposed 

by Rumelhart and others (1986). This model con- 

sists of an input layer a hidden layer, and an 

output layer. While several hidden layers can be 

used in this model, it is known that only one 

hidden layer is sufficient. Each layer is composed 

of many units and the units between each layer 

are connected with weights. The learning algo- 

rithm of the back propagation neural network is 

performed in two steps. In the first step, input is 

proposed to the network, which creates an output 

by being propagated in all directions of the net- 

work. The output unit error is calculated by 

multiplying a differential coefficient by the differ- 

ence between the output and target value. In the 

second step, the error signal is propagated back- 

wards through the network and the weight is 

corrected based upon it. The control regulations 

of the weight is expressed as : 

w~k(new) =w~h(old) +a~,z~+pdw~h(old)  (1) 

where 8h = ( Tk-- Ok) f ' ( O _ i n k )  

It Eq. (I) w~k is the weight from j th unit to the k 

th unit and zJw~h is the amount of change in the 

weight, zj is the unit output of the j th-hidden 

layer, Zk is the target value, and Ok is the output 

value of the kth unit. O ink is the input value of 

the unit in the kth output layer, and f ' ( O _ i n h )  is 

the differential value of the activation function at 

the kth unit. A sigmoid function has been used in 

this work as the activation function. 

1 
f ( x )  -- (2) l + e  -x 
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Fig. t Generalization procedure of neural network 

The learning rate controls the learning speed of 

the neural network and the momentum parameter 

increases the learning speed and prevents the 

neural network learning from reaching the local 

minimum. Difference between the target and out- 

put values of each unit is defined as : 

E ( w )  = ( 7",-- Ok) z (3) 
= 

The learning of the neural network is to control 

the weight by minimizing the learning error of 

Eq. (3) with the steepest gradient descent method. 

When the output value approaches the target 

value, learning terminates with the learning error 

smaller than the defined value. 

3. Finite Elements Analysis 

3.1 A n a l y s i s  m o d e l  a n d  m e t h o d  

In this study, we set the analysis model illus- 

trated in Fig. 2. The hole drilling strain gage was 

attached to the center of the plate with biaxial 

' /  . 

Fig. 2 Model configuration 

Fig. 3 3-Dimensional finite element model 

stress. The strain gage of the TEA-XX-062RK-  

120 (Measurements Group) was used and the 

hole diameter d was 1.57 mm and the diameter of 

strain gage D was 5.13 mm. The finite element 

mesh was three-dimensional to correspond to the 

strain gage model and was divided into 7 layers 

to remove the elements of the hole part while 

drilling the hole. As to the material properties, the 

Young's modulus of 205 GPa and Poisson's ratio 
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of  0.3 were used. Fig. 3 shows the finite element 

mesh used in this analysis, and Fig. 4 shows the 

details of  the strain gage before and after dr i l l ing 

with a centered hole, and dri l l ing with an eccen- 

tricity of  the hole. Part icularly,  one strain gage is 

composed of  48 elements. The  average strains of  

48 elements were calculated and they are the 

strains at each posi t ion of  the strain gage. The  

14,210 of  8 nodal  solid elements were used as the 

model  and the number  of  nodes was 16, 648. The  

program used in this finite element study is 

A B A Q U S .  

We analyzed the error  due to eccentricity of  

hole to determine the neural  network learning 

data. The stress ratio cry/cr~ has been divided 

into 10 levels ranging from --5 to 5, eccentricity 

e has been divided into 4 levels ranging from 

0.025 mm that is the A S T M  eccentric a l lowance 

to 0.375 mm, which is about  0.5 times the mag- 

ni tude of  hole radius r .  As for eccentricity direc- 

tion, it was divided into 12 levels starting from 

the No. 1 strain gauge and moving 30 ° clockwise. 

We performed analysis to acquire a total o f  480 

neural network training patterns. 

3.2 Ver i f i ca t ion  of  ana lys i s  model  

First, we conducted the analysis of  residual 

stress when the hole was not inclined to verify 

the feasibility of  the finite element mesh. We 

calculated the average strain of  each elements at 

each strain gage before and after dri l l ing the hole. 

With the calculated strains, the maximum stresses 

and the direction are predicted as:  

J (es- -  e,) 2-t - (e3-t- e, --2e2) 2 ~3 - I -  E1 
Oh, 0"2 = - q -  

4 A  4/~ (4) 

In Eq. (4), the cal ibrat ion coefficients _,4, and /~ 

are obtained using finite element  analyses with 

A S T M  E 837. The cal ibrat ion coefficients A and 

/~ were obtained such that ~z~ is --3.0225 × 10 -7, 

/~ is --6.5565 × 10 -7. As a result of  the analyses 

for the three different distr ibutions of  residual 

stresses, the error  was within 1% when the hole 

was not eccentric, and the Table  1 shows the 

results. 

4. Neural Network Training 

The neural network model  for the predict ion of  

error  due to eccentricity is illustrated in Fig. 5. 

The input layer used 3 units of  stress ratio ay/ax, 
normalized eccentricity e / r ,  and eccentric direc- 

tion a,. The output  layer used the % error of  

principal  stress 1 and 2 which is caused by 

eccentricity of  hole and calculated as shown in 

Eq. (5) and direction error  of  principal  stress 

E r r  ft. 

% E r r  a ~ -  a~ ' - -a~  × 100 (5) 
- -  O ' i  

%Err_ai, in Eq. (5) is % stress error  ( i = 1 ,  2), 

o ' / i s  the principal  stress when a hole  is eccentric, 

and G- is the principal  stress for centered drilling. 

Neura l  network learning using the model  of  Fig. 

5 was performed in two separate cases where the 

stress ratio was posit ive and negative. 

We used 240 patterns of  neural  network learn- 

ing when the stress ratio was negative and Fig. 6 

Stress ratio, Normalized hole Eccentric 
. . . . . . . . .  ~: ..... :~ ,  ~(deg) 

Input layer 

Table 1 Verification results for finite element model 

Applied residual 
stress (MPa) 

100 0 

100 100 

100 --100 

(MPa) (MPa) 

99.95 0.0 

99.43 99.43 

100.09 -- 100.04 

HDM analysis result 

(deg) 

0.07 

0.01 

0.01 

Error of 
stress 
(%) 

0.05 

0.57 

0.09 

Hidden layt 

Output I: 

%Err_o~ %En'_~: Err l5 

Fig. 5 Architecture of neural network for error 

prediction due to eccentricity of hole in HDM 
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249 

shows the input value of the learning data. Fig. 7 

shows % E r r  ffl, %Err_a2, and Err_t3, which 

are target values when the stress ratio is negative. 

01 
t~ 

E 0.01 

0 
rr" 

0 .001  ~ ' 

0 0 5  1 1 . 5  2 
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Fig. 8 Root mean squared error versus epoch num- 
ber for negative stress ratio 

In this study, we performed neural network lear- 

ning using a backpropagation neural network 

program with the hidden layer units of 80, the 

learning rate of 0.1, and the momentum parame- 

ter of 0.8. Learning was programmed to termi- 

nate when the root mean squared error (RMSE) 

reached 0.005 or epoch number repeated for 

300,000 times. 

R M S E =  v /  k=, ~ '  ( T k -  O~) (6) 

Fig. 8 shows the root mean squared error ac- 

cording to the epoch number. The root mean 

squared error reached the target error of 0.005 

after 166,152 times of repeated learning. Success 

of neural network learning is judged by com- 

paring the output and input values of each unit 

from the neural network output layer. Fig. 9 

shows the neural network output and input values 

together and shows that all three of the output 

values match the target values, which implies that 

neural network learning has been achieved suc- 

cessfully. 

When the stress ratio was positive, neural net- 

work learning is performed in the same way as 

the negative stress ratio. We used 240 input pat- 

terns, and learning data input values and target 

values are shown in Fig. 10 and Fig. 11. The 

momentum parameter of 0.8, the learning rate of 

0. I, and the 80 hidden layer units were used as 

neural network learning conditions and the final 
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neural network learning was performed until  the 

-100 i ~ : - - r -  t r , 

0 60 120 180 240 
Pattern number 

root mean squared error reached 0.005. The root 

mean squared error reached the target error after 

207,558 repeated learning trials. The root mean 

squared error according to epoch number is 

shown in Fig. 12. Fig. 13 shows  the neural net- 

work output and target values after learning 

when the stress ratio was positive and it shows  

that all three o f  the output values match the target 

values. 
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5. Prediction of  Eccentric Error 

When any input  value is tested using the train- 

ed neural  network after successful learning, the 

network provides an appropriate  prediction result 

in accordance with the input. We presented input  

values for voluntary  stress ratio, magni tude  and 

direction of eccentricity to the trained neural  

network and predicted the error magni tude for the 
input. 

Table  2 and Table  3 show a comparison of the 

error results that were acquired by the finite 

element analysis and predicted by the neural  net- 

work. Table  2 shows the results when the stress 

ratio was negative and Table  3 shows the results 

when the stress ratio was positive. We compared 

the predicted results of  neural  network and finite 

element analysis results for two voluntary  input  

values. Al though the data on one relative error 

exceeded the engineering error range, it was a 

sufficiently small  value from an absolute error 

standpoint.  Therefore, the neural  network pre- 

diction values generally matched the results of 
finite element analysis. 

Table 2 Predicted results for negative stress ratio 
(a) Case 1 

Input value 

Stress ratio, 
-5.83 a /  ax 

Normalized 
0.191 

eccentricity, e/ r 

Eccentric direction, 
80 

a(deg) 

(b) Case 2 

Output value 
(error due to eccentricity) 

FE Neural 
analysis network 

k E r r  al 31.76  31.27 

k E r r  a2 

E r r _ ~  

(deg) 

-1.42 -1.61 

-2.34 -2.26 

Inv . ,  value 

Stress ratio, 
-1.4 

a / a x  

Normalized 
0.2541 

eccentricity, e/ r 

Eccentric direction 
160 

a(deg) 

Output value 
rror due to eccentricity) 

I FE Neural 
analysis network 

k E r r  as 11.89 11.63 

k E r r  a2 

Err j 3  
(deg) 

-16.23 -16.44 

-4.04 4.17 

Table 3 Predicted results for positive stress ratio 
(a) Case 1 

Invu~ value 

Stress ratio, 
1.5 ay/ ax 

Normalized 
0.3185 

eccentricity, e/ r 

Eccentric direction, 
45 

a(deg) 

(b) Case 2 

Output value 
(error due to eccentricity) 

k e r r  al 

k E r r  az 

Err_B 
(deg) 

FE Neural 
analysis network 

7.86 7.57 

13.97 14.39 

-15.4 -14.7 

Invut value 

Stress ratio, 
ayt ax 6.0 

Normalized 
0.3312 

eccentricity, e/ r 

Eccentric direction 
135 

a(deg) 

Output value 
or due to eccentricity) 

I FE Neural 
! analysis network 

%Err al -38.63 -36.98 

%Err az -13.21 -12.60 

Err/~ -5.66 -5.90 
(deg) 
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In case of the same type of strain gage, we 

believe that if the trained neural network des- 

cribed in this research is used, we can effectively 

predict the error magnitude due to eccentricity of 

hole without performing addit ional finite element 

analysis processes. 

6. Conclusions 

In order to predict the measured e~'ror due to 

eccentricity of hole when residual stress was 

measured by the hole-dri l l ing method, we found 

the error according to stress ratio and found the 

magnitude and direction of eccentricity using fi- 

nite element analysis. We then generalized the 

results using artificial neural networks. 

We decided the neural network learning con- 

ditions and performed final neural network lear- 

ning individually when the stress ratio was nega- 

tive and positive. The output values, after neural 

network learning, showed good agreements with 

the target values. The results of  error predictions 

according to voluntary stress field, the magnitude 

and direction of eccentricity using the trained 

neural network generally matched the results of 

the finite element analysis. This means that the 

eccentricity error in the hole-dri l l ing method can 

be effectively predicted using the results of this 

study. 
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